将人脸简笔画“分区”的方法优势在于灵活度较高,但也可能带来各个组件不兼容的问题。这个问题对于眼睛来说尤其明显。模型“分区”考虑左右眼的策略可能导致输出图像的眼睛不对称。
根据论文,引入对称损失(symmetry loss)或明确规定输出结果中的眼睛必须来自同一样本可解决这一问题。
另外,在用于训练的17000张简笔画和照片中,大部分是白种人、南美人的脸,缺乏少数族裔样本。因此,模型对少数族裔样本的画像结果可能会出现失真等问题。
结语:人脸合成技术的价值超出预期
本项研究中,中国科学院北京分院的研究团队采用“从局部到全局”的方法,设计出一个AI人像生成模型。该模型可以依据一张人脸简笔画,输出逼真的人脸画像。
根据论文,在未来,研究人员计划引入侧脸简笔画、在简笔画中增加随机噪声等,通过增加训练数据的规模,使模型输出图像结果更准确。
另外,“从局部到全局”模型的官网信息指出,研究人员将很快推出该模型的代码。这意味着在不久的将来,我们将能看到这个模型的实际应用。
近些年来,基于生成对抗网络(GAN)的Deepfake技术多次被曝出滥用丑闻,引起了很大争议。学界和业界一度谈Deepfake而“色变”,致力于找出能规避其风险的解决方案。比如,如脸书、亚马逊网络服务及其他机构联合发起了“Deepfake鉴别挑战”项目。
同样用到生成对抗网络,这次中科院团队研发的模型可以利用简笔画生成逼真人像,这既显示出了现在人脸合成技术的厉害之处,也启示我们人脸合成技术的价值比想象的更加丰富和超出预期。