在2014年NIPS上,同为上海交大校友的陈天奇和李沐经过交流,发现大家普遍在做重复性工作,于是决定合作开发MXNet。随后,越来越多的开源贡献者参与到MXNet的开发和维护工作中。在亚马逊将MXNet定为官方框架前,图森、地平线、Wolfram等公司都为MXNet贡献了很多代码。
清华大学毕业生贾扬清在加州大学伯克利分校攻读计算机科学博士期间,创立了对移动端友好的开源深度学习框架Caffe,被微软、雅虎、NVIDIA、Adobe等公司看好并采用。毕业后他到谷歌任科学家,同Jeff Dean等大神参与TensorFlow的开发,然后又在2016年跳槽去了Facebook,并主导了Caffe2移动端深度学习框架和ONNX项目的开发。
▲贾扬清
因为传统PyTorch偏研究,Caffe2偏应用实践,两个框架之间存在很难跨越的鸿沟,一年半前,Facebook决定将这两套框架合并成PyTorch 1.0,实现从研究开发到生产实践的无缝对接。
如今,陈天奇已加入美国机器学习创企OctoML任CTO,明年秋季将加入卡内基·梅隆大学任助理教授。李沐现任亚马逊AI主任科学家。贾扬清则于今年3月作别Facebook,加盟阿里巴巴任副总裁、阿里云智能计算平台事业部总裁,并担任阿里巴巴开源技术委员会负责人。
04、BAT入场,中国开源AI起步中
国外开源AI框架的厮杀正紧,国内AI企业在AI开源项目上的格局则相对更为分明。
▲BAT在Github上的AI开源项目不完全统计
目前唯一跻身Github全球最受欢迎AI框架排行榜,能与TensorFlow、PyTorch等相提并论的是百度飞桨。
百度飞桨源自于百度深度学习实验室于2013年创建的内部工具“Paddle”,2016年9月正式宣布开源。这使得百度成为继谷歌、Facebook、IBM后第四家将AI技术开源的公司,同时也是打造国内第一个且唯一中文开源深度学习平台的公司。
飞桨根据本土化特点将开源框架与应用层面做了更好的结合,比许多现有深度学习框架更快、更好用。贾扬清曾评价它在简洁、灵活、快速等领域功力不俗,且解决了Caffe早期存在的一些遗留问题。
今年8月,百度还对外发布了面向终端和边缘设备的端侧推理引擎Paddle Lite Beta版,不仅支持飞桨,还支持TensorFlow、PyTorch和ONNX模型格式。
很有意思的是,2016年7月9日,美国NASA在Github上公开了47年前登陆月球的Apollo 11源代码。
恰好一年后,百度宣布开源其自动驾驶系统Apollo,其自动驾驶软件可供任何人免费下载及修改使用。
目前飞桨在Github上的star数达1.02万,fork数达2700,有264位贡献者,提交超过2.5万commits。而Apollo比飞桨还要受欢迎,star数达到1.53万,fork数超5200。
腾讯也大约从2016年起不断将内部开源出来的优质项目发布在Github上,如今它在Github全球公司贡献榜上位居前十。
截至今年8月,腾讯已在Github上发布82个开源项目,其中包括7个方向的AI开源项目。
Angel是腾讯第一个AI开源项目,最新3.0版本升级为全栈机器学习平台,擅长稀疏数据高维模型的训练,可支持多类图计算算法,覆盖了机器学习全流程。它可以与TensorFlow、Caffe等业界主流深度学习框架很好地兼容。
Angel早在2016年年初就在腾讯内部上线,应用在微信支付、QQ、腾讯视频、腾讯社交广告、用户画像挖掘等业务中,2017年6月在Github上低调开源。
当前Angel平台包含超过50万行代码量,其star数已经超过5400,fork数达1400,总计有40位贡献者,提交2300多次commits。